
RIBS
manual

v 1.2.3

This document is a work in progress.
If you find any inaccuracies
or think that some topic is insufficiently covered,
feel free to contact us at hvoyaaudio@ya.ru

Thanks to all who patiently ask questions
and provide constructive feedback.

facebook.com/hvoyaaudio
vk.com/hvoyaaudio

mailto:hvoyaaudio@ya.ru
mailto:hvoyaaudio@ya.ru
https://www.facebook.com/hvoyaaudio
https://www.facebook.com/hvoyaaudio
https://vk.com/hvoyaaudio
https://vk.com/hvoyaaudio

CONTENTS

GENERAL INFO

QUICK START & FX MODE

EXTREMELY SHORT GRANULAR SYNTHESIS OVERVIEW

GUI & MIDI CONTROL

GENERAL STRUCTURE

PERFORMANCE MODES

FILLING THE BUFFERS

GRAIN LENGTH, WINDOWS & GAPS

PICKED BUFFER

USING CERTAIN BUFFERS

WAVEFORM ACTIONS

PLAYHEAD MOTION

FILTER

AGC & DC

ENVELOPES

VOICING

MIX

AUTOMATION

GENERAL INFO

Ribs is a virtual instrument / fx that uses granular synthesis (GS) as its main sound production method.

This manual describes Ribs v 1.2.3. To check which version you have press the “i” button on the GUI to the right of the
logo or see changelog.txt that comes with the distribution.

Ribs is distributed as x86 and x64 VST2 and standalone builds for Windows and as universal builds of VST2 and AU
plugins and a standalone app for OSX. It should work on all Windows systems starting from 7 and all OSX starting
from 10.7. To use it just copy the corresponding files into your preferred plugin directory.

If you find this software useful and want to support its further development, you can do so at
Patreon.com/EugeneYakshin or Paypal.me/EugeneYakshin. Your support is highly appreciated.

This software is written with love and care in the minds of its creators, however if as a result of using it your
computer starts exterminating everything in its reach, you cannot blame the authors. See EULA.txt for more details.

If you encounter any bugs, please send an e-mail with a description to ribsey@ya.ru.

VST is a trademark and software of Steinberg Media Technologies GmbH.

3

http://www.patreon.com/eugeneyakshin
http://www.paypal.me/EugeneYakshin
mailto:ribsey@ya.ru

4

QUICK START & FX MODE

Ribs has 32 buffers that can store incoming audio and can be used as separate voices triggered by MIDI messages.

But the easiest way to use Ribs is to enable the FX mode. To do that press the FX button on the top-left of the GUI. In
this mode Ribs behaves as an fx. By default the first tab on the top will be highlighted with light gray, indicating that
this buffer will be used as soon as your host starts playing. Audio for this buffer will be grabbed from the output of
the track that Ribs is on.

You can enable and disable any voice by clicking on a relative tab top. Technically, request picked buf param is
responsible for toggling a voice’s state. By right-clicking the tab tops or the FX button you can find “reset fx mode
voices” item that will release all active voices.

In FX mode the voice note and voice volume parameters are visible above the waveform display on the left. You can
set them for each voice independently. By right-clicking the voice note you can find “set all to current” item that will
set all voices’ notes to the current one.

In FX mode
MIDI note on and note off messages are ignored,
active voices parameter, use buf for <note> flags and MIDI panic are ignored,
poly/mono logic set by the corresponding parameter does apply.

For hosts that don’t support routing of both audio signals and MIDI messages to the same track FX mode is the only
way to use Ribs.

By default when you hover the mouse over the controls tooltips with parameter name, short description and optional
control modifiers will be shown. You can always toggle it by clicking the “?” button to the right of Ribs logo on the top-
right of the UI.

The “i” button right above it will show the panel with some technical data and support links.

Also, see the presets folder that comes with the distribution. It contains several simple .fxp preset files as well as
description.txt that can help you find your way around faster.

!

EXTREMELY SHORT GRANULAR SYNTHESIS OVERVIEW

The main idea of GS is cutting a sound into small pieces that are called grains, then overlaying and rearranging them
to produce a new sound. So Ribs does not exactly generate the sound from scratch, but uses the source audio to
build from it. If you cut a sound piece of a certain length (usually denoted by the Greek letter λ, lambda) and repeat it,
you can hear a pitch that corresponds to the same wavelength. Thus, if you repeat a grain with the length of 1/261.6
seconds, you can hear C of the first octave, because it’s wavelength is 261.6 Hz.

But if you simply repeat a grain, most probably it will sound harsh, since its end and start don’t have the same value.
Such jumps in audio signal create unpleasant clicks. This problem is solved by multiplying a grain by a window
function. Window functions that are used in GS usually start at 0.0, smoothly go up to 1.0 and then fade back to zero.
In general you need a longer grain to compensate for these fades, but if you keep the actual time between the grain
starts unchanged the pitch will also stay the same. Consequently, the grains should overlap exactly by the length of
the fades. (See window type and grain overlap params)

A grain is composed of the contents read from the source
audio. This reading process starts from the grain start
position. The reading position then moves through the
source, building the grain sample by sample. Reading
position is called playhead in Ribs.

If you repeat exactly the same grain without any changes,
it sounds mechanical. But if you slowly shift the grain
start position through the source audio, the sound
becomes more alive, and the perception of pitch remains.
If you shift it too fast, the pitch will fall apart. This shift
parameter is referred to as step.

That’s pretty much it.

time in the
source audio

step

 λ

grain start positions

 λfade
(overlap)

grain start

window

timetime

 λ
(wavelength)

grain start

In Ribs wavelength is referred to as base length (sometimes also lambda), and overlap is called exactly the same.

The number of simultaneously sounding grains is two times the overlap plus one, e.g. when overlap equals 7.5 there
are 16 grains being played at the same time, though several of them are very quiet because they are in stages too
close to window start or end.

1 … 16

 λ 7.5 * λ

5

GUI & MIDI CONTROL

PERFORMANCE
MODE

INPUT
CONFIG

TOOLTIPS
& INFO

Most of the UI elements are controlled by mouse
dragging or mouse wheel. When you hold down the
Ctrl key (Cmd on Mac) the value changes slower.
There are several exceptions that will be described in
corresponding sections. When you change some
controls, additional small rectangle with param value
appears beneath a control. You can click this
rectangle and type the value that you want.

6

BUFFERS

GRAIN LENGTH PLAYBACK DYNAMICS

AGC FILTER ENVELOPES VOICING
MIX

TRIPPY
LOGO

PLAY
HEAD WINDOW

GRAIN GAPS

Here’s an approximate layout of GUI sections based on the functions of the controls:

Most of controls have a menu available by the right click. The 1st
item is the exact parameter name, then go MIDI learn and MIDI
forget items. Some controls have additional items in the menu.
When this is the case, a tooltip reflects that. For example, the menu
for MIDI panic param has the item that allows to erase MIDI map.

MIDI

i If GUI texts on your machine look different from what you see in this manual, install Roboto Mono font that comes
with the distribution archive. Roboto font family is designed by Christian Robertson, it’s beautiful and is free to use.

…

Filter

AGC

Envelopes

Voice 1

Buffer 1 …

…

GUI

Buffer tabs

Other controls

Buffer
pointer

…

Filter

AGC

Envelopes

Voice 32

Buffer 32

Buffer
pointer

Ribs is a polyphonic synth. Its structure is a bit more flexible than the usual one across the granular tools, so in some
use scenarios it may seem a bit confusing. Here’s its rough structure that will help you gain some intuition:

It has 32 voices. Each voice has its own filter, envelopes, AGS scheme and additional data such as playhead related
parameters, selection range, note number and so on. When you press a MIDI note, the synth decides which voice to
pick to play the note.

When a voice plays a note, it uses audio from a buffer. There are 32 independent buffers, and by default each buffer
is assigned to a corresponding voice. The 1st buffer to the 1st voice, the 2nd to the 2nd voice and so on. But you can
also make all the voices use only one buffer (see own/common buf param).

GUI has 32 buffer tabs. Each tab represents the contents of a buffer, that a corresponding voice uses. So by default
n-th tab shows the contents of the n-th buffer, because n-th voice uses that buffer. While in common buffer mode, all
voices use the same buffer (for example, the 3rd), so all the tabs display the same 3rd waveform.

For shortness the terms “tab”, “voice” and “buffer” will be used interchangeably when appropriate from now on.

All GUI controls affect voices globally, except for several, which will be specifically described. That is when a
parameter is changed, the change is applied to all the voices.

GENERAL STRUCTURE

i

7

By default when FX mode param is off buffer filling is triggered by incoming MIDI
notes. In general if a buffer is empty it starts filling as soon as it starts being used by
a voice. Further refilling is controlled by the refill mode, refill all and refill this
params.

Each buffer records and plays back in stereo, and has maximum length of 480000
stereo samples (10 sec at 48 kHz sample rate). For shorter lengths you can adjust
the buf size param.

Buffer contents are not saved in plugin states or presets. As of version 1.2.3
exporting to and importing from external files is not supported.

Buffers are filling only when the voices that use them are active and host transport is
running. I. e. if a host has stopped or paused no filling is performed even if you still
hear voices’ release tails. If a refill request is sent in any of these cases “REFILL
PENDING” will be written in the corresponding buffer tab.

FILLING THE BUFFERS

buf size

refill all
refill this

refill mode

! Some hosts put limitations on the range of available input channels.
If it’s your case (the buffers are filling with silence, for example) right
click the multiinput control and in the menu click the channel config
item. The config window will pop up where you can set the input
range. There’s a color coding and numbering that clarify how the
inputs are distributed. You can also enable show channel num to
display an input number above the waveform in the buffer tabs.

By default all buffers record audio from the first stereo input of Ribs.
You can assign each buffer its own input by clicking the multiinput
control on the top left (the two arrows near the reel).

Refill all refills all buffers. Refill this refills only the picked buffer (see own/common buf description for more details).

8

REFILL MODES

There are several refill modes:

notes

!glide

hold

tempo

run

env

refills a buffer when the associated voice starts playing a new note.

does the same except for the case when a voice is gliding in monophonic mode (see poly/mono
param) or when the portamento MIDI CC is on.

keeps the contents until you explicitly request a refill.

refills buffers every so often. When you switch to this mode, refill nom and
refill denum controls appear to the right of refill mode control. You can
define the refill frequency measured in host beats by these controls.

refills a buffer continuously. As soon as the filling position reaches the end of
the buffer it starts refilling from the beginning.

9

refills a buffer on high input signal envelope level. Parameters refill env thresh and refill env sens become
visible on the bottom left of the waveform area. You can adjust the threshold and sensitivity with which the
refilling envelope reacts to the input changes. By hovering the mouse over these controls you can see a
transparent curved shape that shows the approximate behavior of the envelope based on existing buffer
contents. Possible refill events are marked with vertical lines with marks on their tops.

refill env
thresh

refill env
sens

There are 3 performance modes:

NOTES

BEAT

SIMPLE

grain lengths correspond to the played MIDI notes.

grain lengths correspond to the host tempo and beat ratios (described further).

simple buffer playback. Useful if you want to scratch the buffers as vinyl records
or use Ribs as a sampler.

PERFORMANCE MODES

performance
mode

GRAIN LENGTH, WINDOWS & GAPS

GRAIN LENGTHS

Ribs allows for some flexibility when it comes to grain lengths. Instead of one number, it uses separate numerator
and denominator params. In NOTES mode it allows for interesting harmonic experiments and simple fast octave
shifts, and in BEAT mode you get to build lots of possible polymetric structures.

Base len nom and base len denum form a ratio by which grain lengths are multiplied in all granular performance
modes.

Beat num <note> and beat den <note> also change lengths, but by default only in BEAT mode. If use matrix for notes
param is on, they affect grain lengths in NOTES mode too. When beat ratios affect grain lengths, they do so across all
octaves. For example, when beat num E is 1 and beat den E is 2, all Es ‘ grain lengths will be two times shorter.

If you hold down Shift and use mouse wheel, you can quickly change a value of a numerator or a denominator to be
two times bigger or smaller. Holding down Ctrl (or Cmd on Mac) will make values change slower.

Beat ratios are organized graphically in a structure that resembles one octave keyboard, but without complete key
borders and colors. Transparent rectangle on the bottom of each key shows the approximate sum of volumes of all
voices that play this note, if there are any.

To set up the key ratios easier, use randomize ratios param, or, to the contrary, use align others menu item to align
all numerators or all denominators to the clicked one.

Note that grain length ratios affect the filter cut-off when flt follows note param is on. Base len nom and base len
denum will do that always, while beat nums and beat dens for notes will do so only when use matrix for NOTES
param is on.

i

base len nom

base len denum

randomize ratios

12 beat num <note> and beat den <note>
for 12 notes across all octaves

use matrix for notes

volume indicators

10

grain overlap

window type

Grain overlap is measured in base lengths. Naturally, the more
overlap there is, the more high frequency details get smoothed
out. High frequency content is still there, but the details are not
as localized in time as they originally were. However, with
relatively big base lengths this effect disappears. With longer
overlaps some audible band-reject filtering and flanger may also
appear.

Longer overlaps imply higher CPU load. You can balance it out by
lowering the amount of active voices.

There are 3 window functions:

linear

parabolic

sinusoid

the most harsh-sounding one

fades are composited of pieces of a parabola. More soft-sounding.

different from the previous two in that it doesn’t have a flat part.
With zero and short overlaps it introduces noticeable amplitude
modulation.

overlap = 0.5

WINDOWS

GAPS

It may sound interesting when you skip grains. Gaps probability controls how
often it happens, gaps mono/stereo allows to skip left and right contents of a
grain independently, and gaps distribution toggles between random and
evenly distributed gaps

Input fills gaps does what it says. When a gap is filled with input it will be
processed by the filter and AGC just as a usual grain would.

One of possible use cases would be having average overlaps and moderate
amount of stereo gaps - it makes the panorama of a sound wider and the
structure more interesting.

11

gaps
probability

gaps
mono/stereo

input
fills gaps

gaps
distribution

The flags are also ignored if you request a certain buffer to be used to play the next
note. You can do that with request picked buf param. To request a buffer just click
on the top of the picked buffer tab. It then gets highlighted. When you play the next
note, the flag is automatically switched off. If you pick another tab, the request will
be transferred to it. If you want to cancel the request before the note is played, click
it once more.

Use for <note> flags are among those parameters which
values are unique to every buffer. These 12 controls reflect
the states of use flags for the picked buffer. They define
whether the voice that is associated with the picked buffer
will be selected by the synth to play the corresponding note. It
is useful when you set Ribs up to work as a sampler. This way
you can specify a set of buffers for the synth to choose from
when picking a voice to play a note. There are additional
group operations available in the menus of these params to
make setting up easier.
Note that if for any reason there are no other voices to play
the note (e.g. in monophonic mode), the flags will be ignored.
In FX mode the flags are ignored.

USING CERTAIN BUFFERS
12 use for <note> flags for 12 notes across all octaves

Own/common buf param is used to set all voices to use the picked buffer as their
audio source. When on, all buffer tabs display the same waveform, and the id of the
common buffer is shown to the right of the control. However, all per-voice params
will keep their unique states (selections, playheads positions, use flags, waveform
zooms, etc). All other buffers will keep their contents, and refill commands will be
ignored by them. Refill this will be ignored only when the common buffer id and the
picked tab id are different. For example, if you picked 1st buffer as common and
then switched to the 5th tab, R THIS will be ignored, When you switch back to the 1st
tab, R THIS will do its job. Picking another tab after enabling common buffer mode
will not switch voices to this new buffer.

PICKED BUFFER

Picked buffer is one of the key params in Ribs. It is used to modify several params on a per-buffer basis. When you
modify them, the synth looks at the value of picked buffer to choose which buffer gets the modifications (also, see
Automation section). These dependable params are:

own/common buf selection start refill this playhead position voice note
use for <note> flags selection end refill env sens aiming playhead voice volume
request buf clear selection refill env thresh

Using these params together with picked buffer allows to set their unique values for every buffer without bloating the
parameter list. Consequently, their automation curves in your DAW will reflect the states for the picked buffer.

To change the value of picked buffer, you have to left-click on a desired tab. The number on the picked tab displays
the value of the parameter. If you just hover the mouse over the tabs without clicking, you can see the waveforms of
other buffers without actually picking, as well as the states of selection start, selection end, playhead position and
the use for <note> flags for the buffer that you are looking up.
Detailed description of operations with waveforms (selecting a region, aiming playhead, scratching, zooming, etc.) is
described in the “Waveform Actions” and “Playhead Motion” sections.

12

You can use this param right before switching to or during the monophonic mode or portamento. The currently used
voice will then be released as soon as the new note is sent to Ribs.
When FX mode is on, request picked buf is used to trigger the picked voice state. Menu for this parameter is
available by right click on any tab except the picked one.

WAVEFORM ACTIONS

Buffer tabs area has several controls in it and contains a lot of information. Most of it is explained in this section, but
parts that are directly related to playhead are described in the “Playhead Motion” section. With tooltips enabled
hovering the mouse over the waveform displays short description of controls. Picked buffer and request picked buf
were already described earlier. You can look up another buffer contents, selection range, playhead and use buf flags
states without picking a buffer by simply hovering the mouse over the tabs.

Just as on beat ratio keyboard, transparent white rectangles on the tops of the tabs show approximate volume, but
here it is on a per-voice basis.

Each tab has its own unchangeable pair of slightly transparent colors to display left and right channels of the
corresponding buffer contents. When own/common buf param is on, all waveforms display the contents of the
common buffer, but each tab keeps its own colors and zoom levels. When the contents are too loud, the overdriven
audio peaks will be marked with transparent white.

EXAMINING WAVEFORMS

Waveform display allows for detailed examination of buffer contents. By default a waveform displays the full length
of a buffer. You can use mouse wheel to zoom in and out on the time axis. When zoomed in, you can use Shift +
mouse wheel to scroll the view to the sides. If the contents are too quiet, use Ctrl (Cmd on Mac) + wheel to zoom in
and out on the amplitude axis. Zooms do not depend on anything, however changing the buffer size resets horizontal
zoom. As of version 1.2.3 zooms are not saved in presets and in the plugin states.

SELECTING REGIONS

You can temporarily restrict the working area inside a buffer with selection start and selection end params. This is
done by right-dragging with the mouse over the waveform or by left-dragging and holding the Shift. The edge that is
currently being modified will be highlighted. You can edit the edges separately when you hover the mouse over the
needed one and drag it in the same way. If you want to transpose the existing selection, right-click or Shift + left-click
the position on the waveform where you want to set the transposed selection start.

Minimal selection size is 4 samples. Selection is unique to every buffer (see picked buffer) and saved in presets and
plugin states. Clear selection function is obvious. To manage selections for all buffers at the same time, switch the
select this/all param on.

For hosts both start and end values are normalized (i.e. from 0.0 to 1.0, where 1.0 corresponds to the current value of
buffer size param), but to make it easier on the GUI the values in the square brackets on the bottom of the waveform
region represent edges’ positions measured in actual samples in a buffer. Since all mouse clicks directly on the
waveform are used to perform actions, to access the menus of selection params just right-click their values in
square brackets.

selection start selection endplayhead position

clear selection

select this/all

current filling position

filling indicator

input channel number
(see multiinput)

current note voice volume indicator

13

Selection can be controlled by MIDI CC. To make setting these params by MIDI more precise, the values of incoming
CCs are mapped on the visible range. However, since in version 1.1.0 visible waveform ranges and zooms are not
saved in presets, the reliable way to save selection automation is by recording automation curves for these params.

i

PLAYHEAD MOTION

Playhead related controls are plenty, but the logic is fairly simple here. There are params responsible for propelling
the playhead, params that introduce different types of errors into the motion, params responsible for special cases
behavior and params related to direct user control of playhead motion (aiming a playhed).

But first, there are two vertical lines on the waveform that indicate playhead position data for displayed buffer.

Thick transparent white line shows last calculated grain start position. This line is present only in granular
performance modes.

Thin light gray line shows current playhead position. Just in case you’re wondering: since with nonzero overlap there
may be several grains playing simultaneously and each grain reads from a buffer independently. This line shows the
playhead of the latest launched grain.

AUTOMATIC PROPELLING

Initially all voices’ playheads start from the first sample of a buffer and move
automatically forward in recorded source audio time, from left to right by default.

In SIMPLE mode the speed and direction of motions are controlled by the
playrate param.

In granular modes there are two aspects of motion: propelling of a grain start
position and propelling of the playheads that are used by the grains. The former
is controlled with the step param, and the latter with the playrate param. Both
controls allow to double or halve their values by using mouse wheel and Shift key.

14

grain start position aiming playhead playhead position select this/all

step repeat
step modifiers

As explained in the Extremely Short Granular Synthesis Overview, step is the distance between the previous and the
new grain start positions. It is measured in samples. To preserve the perception of a pitch this distance shouldn’t be
too long. Or, if it does, before moving the grain start position further, the current grain should be repeated several
times. This is done by using repeat param.

SPECIAL CASES

Playheads and grain start positions are essentially just read positions in a buffer. Each
buffer has a valid range inside which these positions should be kept. Initially this range
is defined by the beginning and the end of the buffer. While the buffer is not completely
filled the fill level puts tighter restrictions on the valid range. Moreover, you can specify
the range by using selection start and selection end parameters.

If you want the sounds that you play to have temporal structures that resemble that of the related buffers to some
extent, the following three step modifiers may be very useful (in many other cases they’re useful too):

step *= repeat multiplies step by the number of grain repeats,
step *= base len multiplies step by the length of a grain,
step *= playrate multiplies step by the playrate.

The effect of using these parameters will be intuitively clear if you compare the contents of a buffer and a snapshot
of Ribs’ output. Here Ribs plays a single note, step and playrate are set to 1.0, repeat equals 4, and step is
proportional to the number of repeats and base len:

By the way, the symbol “*=” is a programmers’ shortcut for multiplying the value on the left by the value o the
right, and “∝” is a mathematical symbol for proportionality.

this snapshot is taken with Oscilloscope Meter by Cockos

wrap/mirror

return
playhead

When a read position reaches either of the edges of the valid range, there are two options: the position can be
wrapped around the range and keep the direction of movement, or be reflected against the edge, changing the
direction. Wrap/mirror param defines this behavior.

Another special case is what happens when a new note is played by a voice. If return playhead param is on, read
positions will be reset to the beginning of a valid range. Otherwise they stay intact.

15

INTRODUCING WOBBLE AND NOISE TO PLAYHEADS’ TRAJECTORIES

Things appear to be dead when everything is exactly the same. People love all things analogue because in general
real world devices always have some imperfections and noise as essential parts of their nature. Analogue filters and
amplifiers have all sorts of nonlinearities, some analogue synths don’t play perfectly correct frequencies, and so on.

Ribs has a number of parameters that can make sound more interesting by gently changing it here and there or on
the contrary by turning it into an ocean of noise.

Wobble does it in a continuous manner. Wobbling is an independent process that happens on a per-voice basis. It
can be applied to the playrate by enabling the wobble internal param, and to the base length of each new grain by
enabling the wobble external param. Wobble amount and wobble freq functions are obvious. You can also
synchronize the wobble across all voices with wobble sync voices param.

As a tip, high amplitude low frequency wobble resembles an old vinyl record, and low amplitude high frequency
wobble sounds a bit like a magnetic tape.

It is possible to add some error to read positions. Error int will do that every sample to all the playheads, and error ext
will do that to grain start position every new block of <repeat param value> grains. E.g. if repeat equals 5, the error
will be introduced every 5th new grain. Error ext differs in NOTES and BEAT modes. In NOTES it’s proportional to a
grain length. In BEAT mode it’s not, so it could be used to liven an otherwise mechanically repeating slice.

By default the errors are added to the correct position, so that the temporal dynamic structure of the audio will on
average stay the same. But you can add the errors to the previous erroneous position by switching the preserve pos
while err param off, and then, as you add bigger errors, there even will be no guarantee that the grain start position
makes it to the edge of a buffer, forget the structure at all. Naturally, if an error is smaller than the speed of smooth
motion, the motion will at least keep its direction.

Wobble external and error ext have no effect in SIMPLE performance mode.

AIMING PLAYHEAD AND SCRATCHING

16

wobble
amount

wobble
freq

wobble internalwobble external

wobble sync voiceserror ext preserve pos
while err

error int

aiming playhead playhead position select this/all playhead glide

You can aim playhead at a certain position by left-clicking on a place in a waveform. The playhead will reach that
target in time controlled by the playhead glide param. Set it to zero if you want the position to be set instantaneously.

In SIMPLE mode you’re controlling a playhead, whereas in granular modes you’re controlling a grain start position. It is
done to preserve the granular character of sound. Naturally, in SIMPLE mode gliding is accompanied by distinctive
change of playrate. But in granular modes the playrate is internal to the grains, so it remains intact and glides sound
more like skipping throught the audio CD if you have ever heard this sound.

Grain start position takes into account the repeat value during its glide to the target. For convenience both playhead
and grain start position are referred to simply as playhead in this chapter.

After the glide is over, the playhead will continue its automatic motion. If you want to keep the playhead at the target,
don’t release the mouse. This way you can scratch through the buffers like if it’s a vinyl record. Playhead glide
function will then be similar to the inertia parameter in the real world.

You can aim all the playheads and scratch all the buffers at the same time, using the select this/all param.

During the glides all wobble and error parameters are applied correspondingly.
If the flt freq *= playrate param is on, the filter cutoff will be changed correspondingly during the glides. Wobble does
not change the cutoff.

Playhead position parameter is also used for MIDI CCs and
automation curves. In general its values do not reflect the
actual playheads’ positions. The only exceptions when it may
be close to a real position are the moments like when you
change it by clicking on the waveform or sending a related CC,
or when the next value of its automation curve is not equal to
the previous value.

For better accuracy MIDI CCs for this parameter are mapped
to the range defined by selection start and selection end
values of the corresponding buffer.

Like with selection edges, valid playhead position range is normalized, i.e. spread over the [0.0, 1.0] range where 1.0
corresponds to current buffer size. However, it’s minimal value is not 0.0, but a special small negative value. The
reason is the following. While recording automation, many hosts smooth out small changes in a parameter values.
When you aim a playhead to a target in a long buffer and then aim it again really close to the previous target, the
difference in the values may be smaller than 0,000002. Most likely the host will smooth this difference out. In this
case you can tell Ribs to drop the value of playhead position to this negative minimum as soon as you release the
mouse. This way the smoothing will be avoided, and the negative value will be ignored by Ribs. You can find the drop
on MouseUp option in the menu. This setting is saved with plugin states. Like with the selection edges, and for the
same reasons, the menu is available by right-clicking the value in the square brackets on the bottom of the waveform
display.

Be sure to check the recorded automation curves. If the drops from the valid values to the minimum are not steps,
but smooth fades, edit them to be steps so that they can be interpreted as accurate as possible later on. However, it
is unlikely to have 100% accurate automation.

i

i

17

AUTOMATION

When you click on the waveform, the aiming playhead param is switched on automatically. When you release the
mouse, it is switched off. Originally this param’s sole purpose is proper interpretation of MIDI CCs and recorded
automation curves, but you can also use it to stop the playhead motion just for fun. But only if it is real fun. Don’t use
it if it’s no fun to you. Otherwise what’s the point? Man, this manual is such a pain in the Nevermind, we’re already
past the middle, aren’t we?

FILTER

Filter has a number of traditional parameters with obvious functions such as on/off switch, pass type, cutoff (flt
freq), resonance (flt q) and cutoff modulation by envelope (flt envelope).

There are several filter models:

rs resonant on high q values, nice with noisy sources and flt follows note or for emphasizing on sub bass range.

sm simple. Useful for most of usecases.

fr not french, but formant. Sounds good with spectrally reach sources. Flt q serves as a timbre type.

multiplies frequency by the absolute value of playrate. It’s usefull while scratching the playhead,
for example.

sets filter to the frequency of the played note, multiplied by the ratio base len nom / base len
denum and optionally by the corresponding beat ratio, when use matrix for NOTES param is
on. Since long base lengths can set the frequency too low and in low-pass mode it can render
output almost inaudible, flt freq serves as a minimal frequency value in this mode. When the
frequency is too low, it will be set equal to the bigger integer of the calculated value. E. g. if the
calculated cutoff should be 400 Hz, buf flt freq is set to 500 Hz, the resulting 400 * 2 = 800 Hz
will be set. However, it does not restrict the effect range of flt freq *= playrate.

multiplies frequency by its value +1. After improvements in v 1.1.0 this param seems to be
redundant and most likely will be removed in the future updates.

To the right of the filter block there are filter envelope controls. Its behavior is the same as that of the main voice
envelope. See Envelopes section for details.

flt env A

flt env D

flt env S

flt env R

18

flt on/off

flt pass type

flt model

flt envelopeflt q

flt freq

flt follows note

flt freq *= playrate

flt freq shift

Just in case, here are the abbreviation of flt pass types:
LP - low pass, BP -band pass, HP - high pass, P - peak, BR - band reject.

Beside that there’s a couple of interesting params that modulate the frequency of the filter.

flt freq *= playrate

flt follows note

flt freq shift

AGC & DC

DC offset

base len no DC filtering after DC filtering after AGC

AGC stands for Automatic Gain Control. And DC stands for Direct Current, also called DC offset, or DC bias. It
basically is just a very low or even zero frequency present in a signal. Often grains are cut so that the resulting
waveform is too quiet and has an offset above or below the zero level. This situation gets increasingly more probable
as the base length gets smaller. It can be cured by filtering out the DC and increasing the gain of the signal. This
picture illustrates it:

You could apply AGC without removing the DC, and it would be fine
sometimes. But usually it’s better to filter out the inaudible low frequencies
and only then increase the gain, because DC can take up a noticeable part
of the dynamic range in the signal, and it will get only worse after applying
AGC.

Maxing out the gain makes the dynamics of a signal almost flat. It doesn’t
always sound nice. Agc amount param can help you find the sweet spot.
Usually just a little bit already produces the desired effect.

You can apply AGC and DC on a per-voice basis or globally using the agc &
dc local/global param. Global mode takes up less CPU resources and
makes signal a bit more saturated.

agc amount

agc speed agc hardness

dc removal

agc & dc
local/global

Agc speed param, which value is paradoxically measured in Hz, controls at what time interval inside a signal AGC
scheme looks to decide whether the signal has a desired gain. By default it is set to auto and relies on internal
parameters such as the factual base length. In SIMPLE mode it is set to 50.

Agc hardness is named after the perceptional effect it creates. The bigger the value, the more distorted it sounds. But
It actually controls how fast the gain adjustments are being applied. Together with non-automatic agc speed it can
create an interesting non-linear bouncy effect. The bounciness will depend on rapid changes inside the signal too.

AGC and DC are applied after the filter.

19

ENVELOPES
env A env D env S env R

rearticulate back
rearticulate forward

volume
envelope

filter
envelope

Every Ribs’ voice has one volume
envelope (denoted as “amp” on the
GUI) and one filter envelope. The
envelopes have 4 stages. Attack,
decay and release all have
exponential character.

The effect of the following two params is heard in monophonic mode or during portamento.
Rearticulate back retriggers the envelopes when you release a note and have some older note still being pressed.
Rearticulate forward retriggers the envelopes when you still have a note pressed and then press a new one.
It’s easy to understand by looking at the picture:

VOICING

Ribs supports sustain, sostenuto, portamento and legato MIDI CCs, as well
as the pitch wheel CC.

In polyphonic mode active voices param not only controls the CPU usage,
but also can serve as an additional way to control the harmonic expression
of a performance. It is especially noticeable with arpeggios. When you
lower the number of active voices, the excess voices are not shut down
immediately but are set to the release stage of their envelopes. Also note
that this param is ignored in FX mode.

poly/mono

active voices

glide in attack
glide in release

When a new note comes in and all available voices are taken, Ribs takes into account the existing harmonic diversity
among the active voices as well as the use buf for <note> flags and request picked buf state and steals the most
appropriate voice.

In monophonic mode glide parameter, as usual, controls the time it takes for a voice to change its frequency to that
of a new note. When notes are played separately, this param is ignored. However, there are two modifiers for this
param:

glide in attack makes a voice glide from the previous note even when it was played separately,
glide in release makes “tails” continue gliding to a new note even if the note was released before the glide was over.

envelope
value

MIDI notes

rearticulate forward rearticulate backnormal articulation

glide in attack glide in releasenormal glides

MIDI notes

20

MIX

extrude
input

The functions of amp and mix params are obvious.

Extrude input makes the incoming audio pass through, but as soon as a voice (or
several voices) starts playing, the input volume gets lowered by the growing envelope
level. Decay and sustain are considered the stages during which none of the input
signal is audible. If several voices are in release or attack stages and these stages are
long, the input volume may be noticeably lower or even zero.

AUTOMATION

All the peculiarities of automation of different params were described in corresponding sections, and in this section
this information is just repeated.

Most of the parts of Ribs’ engine are deterministic, but overall complexity practically makes it a chaotic system. This
is mostly caused by the voice picking algorithm (however, you can get a hold of it to some extent by using request
picked buf) and playheads’ trajectories. That’s why 100% precise automation recording is not guaranteed.

If you do scratching, aiming playheads or change the selection range, do remember to record the automation for
picked buffer, buffer size, selection start, selection end, aiming playhead, playhead position and select this/all
params.

While using MIDI CC do keep in mind that selection range CCs are mapped to the visible range of buffer contents,
and playhead position CC is in its turn mapped to the selection range.

21

input
volume

synth
volume

0.0

1.0

facebook.com/hvoyaaudio
vk.com/hvoyaaudio

https://www.facebook.com/hvoyaaudio
https://www.facebook.com/hvoyaaudio
https://vk.com/hvoyaaudio
https://vk.com/hvoyaaudio

	CONTENTS
	GENERAL INFO
	QUICK START & FX MODE
	EXTREMELY SHORT GRANULAR SYNTHESIS OVERVIEW
	GUI & MIDI CONTROL
	GENERAL STRUCTURE
	FILLING THE BUFFERS
	PERFORMANCE MODES
	GRAIN LENGTH, WINDOWS & GAPS
	PICKED BUFFER
	USING CERTAIN BUFFERS
	WAVEFORM ACTIONS
	PLAYHEAD MOTION
	FILTER
	AGC & DC
	ENVELOPES
	VOICING
	MIX
	AUTOMATION

